Search results

Search for "materials characterization" in Full Text gives 43 result(s) in Beilstein Journal of Nanotechnology.

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • quantitative materials characterization at the nanoscale with this technique. Technora® vs Kevlar® K29: structure–property connections Tensile properties The structural distinctions between Technora® and Kevlar® K29 have fascinating implications for the tensile mechanical properties of these fiber classes
PDF
Album
Full Research Paper
Published 05 Oct 2023

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • , materials, characterization data, electrochemical measurements, water contact angle measurements, and comparison of reported ORR activities of Ag-based catalysts. Acknowledgements Authors thank SRM IST for providing Microwave reactor facility and DST-FIST, Department of Chemistry [SR/FST/CST-66/2015(c
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • support from the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1256260. We furthermore thank the University of Michigan Center for Materials Characterization for technical support with SEM imaging (NSF grant #DMR-0320740). Acknowledgements The Graphical Abstract was made
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

Electrokinetic characterization of synthetic protein nanoparticles

  • Daniel F. Quevedo,
  • Cody J. Lentz,
  • Adriana Coll de Peña,
  • Yazmin Hernandez,
  • Nahal Habibi,
  • Rikako Miki,
  • Joerg Lahann and
  • Blanca H. Lapizco-Encinas

Beilstein J. Nanotechnol. 2020, 11, 1556–1567, doi:10.3762/bjnano.11.138

Graphical Abstract
  • characterization information and device schematics. Acknowledgements The authors acknowledge technical support from the Michigan Center for Materials Characterization. The authors would also like to acknowledge Shannon Wetzler for proofreading assistance. Funding This work was funded by the National Science
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • at 110 °C under a compressive stress of 6000 psi for 5 min. The laser ablation of the Teflon pellet was conducted in a container with 3 mL of NH4OH for 1 h. Materials characterization The morphology and microstructure of the prepared carbon nanoparticles were characterized on a transmission electron
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

Simple synthesis of nanosheets of rGO and nitrogenated rGO

  • Pallellappa Chithaiah,
  • Madhan Mohan Raju,
  • Giridhar U. Kulkarni and
  • C. N. R. Rao

Beilstein J. Nanotechnol. 2020, 11, 68–75, doi:10.3762/bjnano.11.7

Graphical Abstract
  • temperature naturally. The resulting product was collected and used for the electrochemical supercapacitor measurements. The obtained results were compared with the as-synthesized rGO nanosheets. Materials characterization The samples were characterized using transmission electron microscopy (TEM), atomic
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2020

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • -4, C-MoS2/rGO-6, C-MoS2/rGO-8) with a 3:1 mass ratio was calcined at 155 °C for 12 h in a sealed vessel. Materials characterization The structure and morphology were investigated by field-emission scanning electron microscopy (FE-SEM, INSPECT F50) and transmission electron microscopy (TEM, ZEISS
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • 12 h. CC-CNT@NiO: The NiO was coated on the CC-CNT by the same process with NiCl2 (0.1 M) aqueous solution instead of FeCl3 (0.1 M). Materials characterization The morphologies and microstructures of the as-prepared samples were characterized by using a field-emission scanning electron microscope (FE
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • × 0.5 mm in size with the thickness of 5–7 μm. The list of the samples is given in Table 1. Materials characterization The phase composition was determined by X-ray diffraction (XRD) using a DRON-3 diffractometer (radiation Co Kα, λ = 1.7903 Å). The crystallite size (dXRD) of SiC and ZnO phases in
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • crystalline when deposited at room temperature, making further post-processing unnecessary. The air sensitivity of this solid requires in situ materials characterization using methods such as spectroscopic ellipsometry, XPS and Auger spectroscopy. Further development of the process, especially more
PDF
Album
Full Research Paper
Published 18 Jul 2019

Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction

  • Rafael Gomes Morais,
  • Natalia Rey-Raap,
  • José Luís Figueiredo and
  • Manuel Fernando Ribeiro Pereira

Beilstein J. Nanotechnol. 2019, 10, 1089–1102, doi:10.3762/bjnano.10.109

Graphical Abstract
  • BM for ball milled samples and C for conventionally doped samples. Activated and carbonized samples were also ball-milled in the absence of any precursor for comparison under the same conditions as in doped samples. Materials characterization The textural characterization was carried out by N2
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • @MWCNT composite. The cathode was fabricated by coating a slurry of S-3D-RGO@MWCNT, polyvinylidene fluoride (PVDF) and carbon black (mass ratio 8:1:1) on a carbon-coated Al foil. Materials characterization X-ray diffraction (XRD) patterns of the as-prepared 3D-RGO@MWCNT composite were obtained using XRD
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy

  • Jesús S. Lacasa,
  • Lisa Almonte and
  • Jaime Colchero

Beilstein J. Nanotechnol. 2018, 9, 2925–2935, doi:10.3762/bjnano.9.271

Graphical Abstract
  • nanoscale materials characterization in the following way: Once the tip is known to be clean, the properties of an unknown surface can be characterized as discussed in the present work precisely because the tip side is clean and well controlled and not anymore an unknown parameter of the system. Only then
PDF
Album
Full Research Paper
Published 23 Nov 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • formation and surface faceting could be the in situ formation of silver nitride, which directly decomposes to metallic silver and nitrogen gas [80]. This dynamic process of incorporation of nitrogen followed by its extrusion could lead to a granular structure of the silver surface. Materials
  • characterization of hydrogen and nitrogen plasma treated silver films Neither XPS analysis nor Auger spectroscopy could detect the presence of nitrogen in the nitrogen plasma treated samples (Figure 4a and Figures S9–S11 and Table S1 and Table S2, Supporting Information File 1). Even depth profiling using Auger
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • was made of Teflon-coated wire that was applied to the FTO film with Kapton tape. Then, a clear insulating epoxy was applied to the Kapton tape and glass edges to provide a working area of 1 cm2. Materials characterization: In order to examine the crystalline structure of Co3O4, an X-ray diffraction
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Nanotribology

  • Enrico Gnecco,
  • Susan Perkin,
  • Andrea Vanossi and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 2330–2331, doi:10.3762/bjnano.9.217

Graphical Abstract
  • techniques for materials characterization are those typical of surface science (e.g., X-ray diffraction, SEM, TEM, XPS and Raman spectroscopy), more specific to nanotribology are nanoindenters, nanotribometers, quartz force microbalance and especially atomic force microscopy (AFM), which, without a doubt
PDF
Editorial
Published 28 Aug 2018

A variable probe pitch micro-Hall effect method

  • Maria-Louise Witthøft,
  • Frederik W. Østerberg,
  • Janusz Bogdanowicz,
  • Rong Lin,
  • Henrik H. Henrichsen,
  • Ole Hansen and
  • Dirch H. Petersen

Beilstein J. Nanotechnol. 2018, 9, 2032–2039, doi:10.3762/bjnano.9.192

Graphical Abstract
  • mobility. Keywords: four-point probes; Hall effect; metrology; mobility; variable Probe Pitch; Introduction Materials characterization becomes increasingly difficult as the dimensions of transistors continue to decrease. Although three dimensional electrical characterization is the ultimate goal of
  • materials characterization, conventional metrology for thin-film characterization still plays an important role in development of materials used in nanoelectronics [1]. Hall effect measurements have been employed for decades to electrically characterize samples and extract important metrics, such as
PDF
Album
Full Research Paper
Published 20 Jul 2018

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  • (LED) lamp without ultraviolet light (<450 nm), while the other half of tubes with NDM were kept in the dark. Materials characterization The surface morphology and microstructure of the fabricated samples were investigated by scanning electron microscopy (SEM, Hitachi S4800, Japan) and X-ray
PDF
Album
Full Research Paper
Published 14 Jun 2018

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • :3 by ball-milling at 350 min−1 for 3 h to obtain the sulfur composite precursor. The S/ZnO@NCNT composite was obtained by heating the precursor at 155 °C for 10 h, in argon flow with a heating rate of 5 °C·min−1. The sulfur-doping method was described in our previous study [33]. Materials
  • characterization Powder X-ray diffraction (XRD, SmartLab, Rigaku Corporation) with Cu Ka radiation was used to analyze the crystal structure of the S/ZnO@NCNT sample. The chemical status and elemental compositions of the sample were investigated by X-ray photoelectron spectroscopy (XPS, Shimadzu Axis Ultra
PDF
Album
Full Research Paper
Published 06 Jun 2018

Heavy-metal detectors based on modified ferrite nanoparticles

  • Urszula Klekotka,
  • Ewelina Wińska,
  • Elżbieta Zambrzycka-Szelewa,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2018, 9, 762–770, doi:10.3762/bjnano.9.69

Graphical Abstract
  • Mn0.5Fe2.5O4 was selected for discussion. The highest heavy-metal adsorption capability and universality was observed for SA as a surface modifier. Keywords: ferrite nanoparticles; heavy metal detection; materials characterization; water purification; Introduction Many research reports show that magnetic
PDF
Album
Full Research Paper
Published 28 Feb 2018

Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications

  • Ruiyuan Zhuang,
  • Shanshan Yao,
  • Maoxiang Jing,
  • Xiangqian Shen,
  • Jun Xiang,
  • Tianbao Li,
  • Kesong Xiao and
  • Shibiao Qin

Beilstein J. Nanotechnol. 2018, 9, 262–270, doi:10.3762/bjnano.9.28

Graphical Abstract
  • Supporting Information File 1. Materials characterization The crystalline phases of the samples were determined by X-ray diffraction (XRD, Rigaku D/Mmax 2500PC) using Cu Kα radiation (λ = 1.5406 Å). The average grain size (D) of the MoO2 nanoparticles was calculated using the Scherrer equation (D = 0.89λ
PDF
Album
Supp Info
Full Research Paper
Published 24 Jan 2018

Gas-sensing behaviour of ZnO/diamond nanostructures

  • Marina Davydova,
  • Alexandr Laposa,
  • Jiri Smarhak,
  • Alexander Kromka,
  • Neda Neykova,
  • Josef Nahlik,
  • Jiri Kroutil,
  • Jan Drahokoupil and
  • Jan Voves

Beilstein J. Nanotechnol. 2018, 9, 22–29, doi:10.3762/bjnano.9.4

Graphical Abstract
  • ), nitrogen dioxide (NO2) and ammonia (NH3) at different concentrations at a temperature of 150 °C. The constant gas flow of 100 mL/min was maintained during all the measurements. Results and Discussion Materials characterization and gas sensing Figure 2a shows a top-view SEM surface morphology image of the
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2018

Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2230–2244, doi:10.3762/bjnano.8.223

Graphical Abstract
  • -range dissipative interfacial forces [43], among others, which could also play an important quantitative role. This simplification has been made with the purpose of investigating in detail one of the key aspects in materials characterization. As a result, the practical application of the analysis shown
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2017

Preparation and characterization of polycarbonate/multiwalled carbon nanotube nanocomposites

  • Claudio Larosa,
  • Niranjan Patra,
  • Marco Salerno,
  • Lara Mikac,
  • Remo Merijs Meri and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2017, 8, 2026–2031, doi:10.3762/bjnano.8.203

Graphical Abstract
  • Claudio Larosa Niranjan Patra Marco Salerno Lara Mikac Remo Merijs Meri Mile Ivanda Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia 15, 16145 Genoa, Italy Department of Mechanical Engineering, University of Wyoming, 82071 Laramie, USA Materials
  • Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy Rudjer Bošković Institute, Center of Excellence for Advanced Materials and Sensing Devices, Bijenička 54, 10000 Zagreb, Croatia, Department of Polymer Materials, Riga Technical University, Azenes Str. 14/24, Riga LV-1048
PDF
Album
Full Research Paper
Published 27 Sep 2017

Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion

  • Amit Singhania and
  • Shipra Mital Gupta

Beilstein J. Nanotechnol. 2017, 8, 1546–1552, doi:10.3762/bjnano.8.156

Graphical Abstract
  • Cu/Pt co-doped ZrO2 has been used for CO oxidation. Results and Discussion Materials characterization The BET method using nitrogen as adsorbate was employed to calculate the specific surface area and pore volume of Pt(1%)–Cu(1%)–ZrO2 (the numerals indicate mol %) nanoparticles. Table 1 shows a
  • °C for 4 h. The sample is denoted as Pt(1%)–Cu(1%)–ZrO2 (the numerals indicate mol %). The amount of the Pt and Cu metals present in the catalyst sample is confirmed by ICP-AES technique (Table 1). Materials characterization The powder XRD data of doped ZrO2 nanoparticles was performed on Rigaku X
PDF
Album
Full Research Paper
Published 31 Jul 2017
Other Beilstein-Institut Open Science Activities